3.801 \(\int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=102 \[ -\frac {(-4 B+i A) (a+i a \tan (e+f x))^{3/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac {(B+i A) (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}} \]

[Out]

-1/5*(I*A+B)*(a+I*a*tan(f*x+e))^(3/2)/f/(c-I*c*tan(f*x+e))^(5/2)-1/15*(I*A-4*B)*(a+I*a*tan(f*x+e))^(3/2)/c/f/(
c-I*c*tan(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {3588, 78, 37} \[ -\frac {(-4 B+i A) (a+i a \tan (e+f x))^{3/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac {(B+i A) (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[e + f*x])^(3/2)*(A + B*Tan[e + f*x]))/(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

-((I*A + B)*(a + I*a*Tan[e + f*x])^(3/2))/(5*f*(c - I*c*Tan[e + f*x])^(5/2)) - ((I*A - 4*B)*(a + I*a*Tan[e + f
*x])^(3/2))/(15*c*f*(c - I*c*Tan[e + f*x])^(3/2))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 3588

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{5/2}} \, dx &=\frac {(a c) \operatorname {Subst}\left (\int \frac {\sqrt {a+i a x} (A+B x)}{(c-i c x)^{7/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {(i A+B) (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac {(a (A+4 i B)) \operatorname {Subst}\left (\int \frac {\sqrt {a+i a x}}{(c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{5 f}\\ &=-\frac {(i A+B) (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}}-\frac {(i A-4 B) (a+i a \tan (e+f x))^{3/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 11.68, size = 117, normalized size = 1.15 \[ \frac {a \cos (e+f x) (\cos (f x)-i \sin (f x)) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)} (\cos (4 e+5 f x)+i \sin (4 e+5 f x)) ((B-4 i A) \cos (e+f x)-(A+4 i B) \sin (e+f x))}{15 c^3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + I*a*Tan[e + f*x])^(3/2)*(A + B*Tan[e + f*x]))/(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

(a*Cos[e + f*x]*(Cos[f*x] - I*Sin[f*x])*(((-4*I)*A + B)*Cos[e + f*x] - (A + (4*I)*B)*Sin[e + f*x])*(Cos[4*e +
5*f*x] + I*Sin[4*e + 5*f*x])*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(15*c^3*f)

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 97, normalized size = 0.95 \[ \frac {{\left ({\left (-3 i \, A - 3 \, B\right )} a e^{\left (7 i \, f x + 7 i \, e\right )} + {\left (-8 i \, A + 2 \, B\right )} a e^{\left (5 i \, f x + 5 i \, e\right )} + {\left (-5 i \, A + 5 \, B\right )} a e^{\left (3 i \, f x + 3 i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{30 \, c^{3} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/30*((-3*I*A - 3*B)*a*e^(7*I*f*x + 7*I*e) + (-8*I*A + 2*B)*a*e^(5*I*f*x + 5*I*e) + (-5*I*A + 5*B)*a*e^(3*I*f*
x + 3*I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))/(c^3*f)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \tan \left (f x + e\right ) + A\right )} {\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate((B*tan(f*x + e) + A)*(I*a*tan(f*x + e) + a)^(3/2)/(-I*c*tan(f*x + e) + c)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 0.48, size = 90, normalized size = 0.88 \[ \frac {i \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (-1+i \tan \left (f x +e \right )\right )}\, a \left (1+\tan ^{2}\left (f x +e \right )\right ) \left (-4 A +i A \tan \left (f x +e \right )-i B -4 B \tan \left (f x +e \right )\right )}{15 f \,c^{3} \left (\tan \left (f x +e \right )+i\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(5/2),x)

[Out]

1/15*I/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(-1+I*tan(f*x+e)))^(1/2)/c^3*a*(1+tan(f*x+e)^2)*(-4*A+I*A*tan(f*x+e)-I
*B-4*B*tan(f*x+e))/(tan(f*x+e)+I)^4

________________________________________________________________________________________

maxima [A]  time = 1.26, size = 155, normalized size = 1.52 \[ -\frac {{\left (90 \, {\left (A - i \, B\right )} a \cos \left (7 \, f x + 7 \, e\right ) + 60 \, {\left (4 \, A + i \, B\right )} a \cos \left (5 \, f x + 5 \, e\right ) + 150 \, {\left (A + i \, B\right )} a \cos \left (3 \, f x + 3 \, e\right ) + {\left (90 i \, A + 90 \, B\right )} a \sin \left (7 \, f x + 7 \, e\right ) + {\left (240 i \, A - 60 \, B\right )} a \sin \left (5 \, f x + 5 \, e\right ) + {\left (150 i \, A - 150 \, B\right )} a \sin \left (3 \, f x + 3 \, e\right )\right )} \sqrt {a} \sqrt {c}}{{\left (-900 i \, c^{3} \cos \left (2 \, f x + 2 \, e\right ) + 900 \, c^{3} \sin \left (2 \, f x + 2 \, e\right ) - 900 i \, c^{3}\right )} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

-(90*(A - I*B)*a*cos(7*f*x + 7*e) + 60*(4*A + I*B)*a*cos(5*f*x + 5*e) + 150*(A + I*B)*a*cos(3*f*x + 3*e) + (90
*I*A + 90*B)*a*sin(7*f*x + 7*e) + (240*I*A - 60*B)*a*sin(5*f*x + 5*e) + (150*I*A - 150*B)*a*sin(3*f*x + 3*e))*
sqrt(a)*sqrt(c)/((-900*I*c^3*cos(2*f*x + 2*e) + 900*c^3*sin(2*f*x + 2*e) - 900*I*c^3)*f)

________________________________________________________________________________________

mupad [B]  time = 10.26, size = 190, normalized size = 1.86 \[ -\frac {a\,\sqrt {\frac {a\,\left (\cos \left (2\,e+2\,f\,x\right )+1+\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}\,\left (A\,\cos \left (2\,e+2\,f\,x\right )\,5{}\mathrm {i}+A\,\cos \left (4\,e+4\,f\,x\right )\,3{}\mathrm {i}-5\,B\,\cos \left (2\,e+2\,f\,x\right )+3\,B\,\cos \left (4\,e+4\,f\,x\right )-5\,A\,\sin \left (2\,e+2\,f\,x\right )-3\,A\,\sin \left (4\,e+4\,f\,x\right )-B\,\sin \left (2\,e+2\,f\,x\right )\,5{}\mathrm {i}+B\,\sin \left (4\,e+4\,f\,x\right )\,3{}\mathrm {i}\right )}{30\,c^2\,f\,\sqrt {\frac {c\,\left (\cos \left (2\,e+2\,f\,x\right )+1-\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(3/2))/(c - c*tan(e + f*x)*1i)^(5/2),x)

[Out]

-(a*((a*(cos(2*e + 2*f*x) + sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1))^(1/2)*(A*cos(2*e + 2*f*x)*5i + A
*cos(4*e + 4*f*x)*3i - 5*B*cos(2*e + 2*f*x) + 3*B*cos(4*e + 4*f*x) - 5*A*sin(2*e + 2*f*x) - 3*A*sin(4*e + 4*f*
x) - B*sin(2*e + 2*f*x)*5i + B*sin(4*e + 4*f*x)*3i))/(30*c^2*f*((c*(cos(2*e + 2*f*x) - sin(2*e + 2*f*x)*1i + 1
))/(cos(2*e + 2*f*x) + 1))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{\frac {3}{2}} \left (A + B \tan {\left (e + f x \right )}\right )}{\left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))**(5/2),x)

[Out]

Integral((I*a*(tan(e + f*x) - I))**(3/2)*(A + B*tan(e + f*x))/(-I*c*(tan(e + f*x) + I))**(5/2), x)

________________________________________________________________________________________